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PREFACE

The IBM Scientific Center of Pisa, the University of Pisa and the University of
Siena have been carrying on a research on Stochastic Simulation of Econometric
Models.

The first results have been summarized at the 2nd Meeting on “Teoria dei Sistemi
ed Economia”, Udine, October 1975, in the paper “*Simulazione Stocastica ed
Analisi di un Modello Aggregato dell’Economia Italiana” (Stochastic Simulation
and Analysis of an Aggregated Model of the 1talian Economy).

The following Technical Reports present in detail the methodological aspects and
the complete results of the research:

J

P. Corsi, "Eigenvaiues and Multipliers of Alternative Estimates of an
Aggregated Model of the Italian Economy’’, Technical
Report CSP032/513-3542.

E. Cleur, “Spectral Analysis of an Aggregated Model of the Italian
Economy”, Technical Report CSP033/513-3543.

G. Calzolari, “Generation and Testing of Pseudo-Random Numbers with

T.A. Ciriani, Assigned Statistical Properties to be used in the Stochastic

P. Corsi, Simulation of Econometric Models”, Technical Report
CSP034/513-3544.

C. Bianchi etalii, “Stochastic Simulation of an Aggregated Model of the Italian
Economy: Methodological and Empirical Aspects”, Technical
-Report CSPQ35/513-3546.
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1. INTRODUCTION

Purpose of this paper is the description of the tecniques used to generate
pseudo-random numbers, to be added as disturbance terms to the stochastic
structural equations of econometric models. These disturbance terms should have
the same statistical properties as.the residuals obtained, in each equation, during
the estimation phase.

As the classical multiple regression scheme considers the residuals as random
variables, object of these technigues is the generation of sampies from a
multivariate normal distribution with assigned parameters {mean, variance and
covariance between equations).

The parameters are not exactly known, but only estimated. As currently done
in these cases, the estimated values {resulting from an estimation clgorithm
such as OLS, 25LS, 3SLS, FIML, LISE, etc.) are used instead of their expected
values {or probability limits).

The generation procedure consists of three main steps:

1) Generation of pseudo-random numbers drawn from a population with
uniform distribution in the interval (0,1).

2} Generation of pseudo-random numbers drawn from a population with
univariate normal distribution, with zero mean and variance 1.

3) Generation of pseudo-random vectors drawn from a population with
muitivariate normal distribution with assigned parameters.

These three steps will be described in some detail, as far as implemented
algorithms and performed statistical tests are concerned; no survey on the possible
techniques of generation will be done, and the theoretical and philosophical
problems of randomness of sequences will be left aside.



2. GENERATION OF PSEUDO-RANDOM NUMBERS WITH UNIFORM
DISTRIBUTION

The most successful generators of uniformly distributed pseudo-random numbers
known up to now [22, p. 9] follow the Linear Congruential scheme proposed
by D.H. Lehmer [23, p. 141] .

A special case of this method, known as the Power Residue Method, has been
adopted [17] .

For a good comprehension of the algorithm, a few concepts of Number Theory

will be introduced here, not in the most general form, but adapted to the -
particular case here considered |34] . A

2.1 Primitive roots of a prime modulus

Recalling that integer numbersare ... -2, -1,0, 1, 2, ...... a congruence is defined as
follows: :

if a, b, m are integers, a is said 6ongruént' to b modulo m
{1) a=b (mod.m)
if the integer a-b is @ multiple of m.

For example 14 = 4 {mod. 5} since 14-4 = 10 is a multiple of 5,

If the madulus is a prime number (p == 2,3,5,7,11,13,17,....) and a is an integer
not a multiple of p, the following congruence holds:

(2) a?’=1 (mod.p) ‘

Forexample 27" = 1 (mod. 7)since 277! - 1 = 63 is a multiple of 7,
Also 37" =1 {mod. 7) since3 7'~ 1 =728 is a multipie of 7.




Eqg. {2) is known as Fermat's theorem. The first demonstration of it was given by
Euler in a more general form that, involving the multiplicative function ¢ {m),
extends eq. {2) to not prime moduli,

The demonstraticn of this theorem can be obtained by the elementary properties
of the congruences and can be found in any introductory book of Number
Theory [34, p. 37] ,[5,p. 13], [15p. 63 ].

Referring to the last two examples, we notice a difference between the behaviour
of the bases 2 and 3. Let the exponent run on the paositive integers up to 7-1. We
find that: '

2' £ 1 3t #1
22 1 3 E
22=1] {rod. 7), while 3> 21| (mod. 7)
2% F 1 3% £ 1
25 1 3£
26 =1 3¢ =1

The first column has a positive integer exponent less than 7-1 (3} that makes the
power of 2 congruent to 1 modulo 7. In the second column no exponent

makes it, untill 7-1; 3 is said ““Primitive root modulo 7*; 2 is not a primitive root
modulo 7.

In general a positive integer g is said “‘Primitive root modulo p* if [34,p.76] ;
(3} g" £ 1 (mod. p) (n =1,2, ..., p-3, p-2)

This definition leaves the problem of the existence of such primitive roots in
general opened. This problem is solved by a theorem [ 34 p. 77] that states:

Each prime number has at least a primitive root.
As an immediate corollary it foltlows that, if g is a primitive root modulo p and A

has no commeon factors to p-1, then also g” is a primitive root module p. So each
prime number has an infinity of primitive roots,



Given two integers @ and m, it is called “minimum non negative residual of a
modulo m' the integer ¢ such that:

{4) &=u (mod. m) 0u<m)

It is clear that, given 8 modulus, two integers are congruent if, and only if, they
have the same minimum non negative residual to that modulus. :

We can now state a property of primitive roots used as the basis of the power
residue method for random number generation.

Let p be a prime number and g one of its primitive roots. If n runs on all the
integers between 1 and p-1, then the minimum non negative residual of g 7
modulo p runs on all the integers between 1 and p-1.
A simple proof can be given ab absurdo:
Letbe: 1< A< p-l

1<kXp-1

k< h
If g” and g ¥ have the same minimum non negative residual modulo p, then:
(5) g"=g*% (mod.p)
From this follows, dividing by g ¥, that is not multiple of p:

(6) ghm* =1 (mod.p)

As 1 < h-k < p-1, from eq. {6) follows the absurdum that g cannot be a primitive
root modulo g, and the proof is complete,

Wi r




2.2 The Power Residue Method [ 17 ]

Using the same simbols as above, the Power Residue Method can be synthetized in
the formula:

(7) u, =g" (mod.p) 1<vu, < p-1
where u, is the number generated at the n-th iteration.

As stated above this algorithm generates all the integer numbers between 1 and
p-Twithout repetition, while the index n runs from 1 to p-1; the order of
generation is, with some restrictions, so far from a trivial order that a generated
sequence can be considered a sample of pseudorandom independent numbers
drawn from a discrete uniform distribution.

Two main restrictions must be considered.

T.ie first one concerns the length of the generated sequences, that always must
have much less elements than p. We notice, in fact, that once a number has been
generated, it cannot be generated any-more, unless the sequence is longer than p-1
(in that case the generation would be cyclical). So the generation looks like a
sampling without replacement, while equiprobability of the uniform distribution
would require a sampling with replacement. But it is known from the limit
properties of the hypergeometric distribution that for large populations there is
pratically no difference between sampling with or without replacement [11, p. 57].

So the first restriction is that the value of the prime modulus p must be larger
than any possible length of sequences of practical use.

The second restriction deals with the primitive root g. If it is too small when
compared to p, the generated sequences can be strongly autocorrelated.

This will be clear if we re-write the generator (eq. (7)) in the following way:

(8) u,=gu (mod. p) 1< u < p1

n-1



putting in evidence the linkage between the value generated at the n-th iteration
and the preceeding one, through the multiplier g.

If g is of the order of magnitude of few units, every time that a small value u, is
generated, it is followed by a rising sequence too long to be considered random.
Probiems of autocorrelation can rise also when the value of g is too close to p.
Empirical considerations, supported by experimental simulations, suggest to
choose avalue of g of the same order of magnitude of \/E, but not too close to it.

A

2.3 The adopted generator

The maximum integer number t??t can be represented in a word of the I[BM
System 370 (32 signed bits} is 2 - 1 = 2147483647, that is a prime number,
and is large enough to be used as a modulus.

The research of a primitive root of such a prime is not quite elementary from a
computational point of view. It has been done [ 24 | and 7 was found to be such
a root.

Fgom the above considerations a multiplier that should give good resulits is

7 = 16807;itis in fact of the arder of magnitude of the square root of the
modulus, and it is still a primitive root, since 5 and 2147483646 are relatively
prime.

With these values of the modulus and the multiplier, the power residue generator
is:

(9) u = 16807 v, (mod.2%'-1) 1<y <231.2

The generator was first used by Lewis, Goodman and Miller [ 24 | , who
performed on it several sophisticated statistical tests, finding satisfactory results.

As it will be explained in the next section, we do not need a discrete uniform
distribution, but a continuous one in the open interval {0,1} of the real axis. We
get a very good numerical approximation of it dividing the generated value u_
‘by the modulus:

(10) U, =u, /(231-1)

9




3. GENERATION OF PSEUDO-RANDOM NUMBERS WITH NORMAL
DISTRIBUTION

Most of the algorithms proposed in the literature [13] for the generation of
pseudo-random numbers with normal distribution are based on asymptotic
properties, so that they can be considered only approximations to normality,
while on the other side they allow a considerable saving of computation time.
Two methods can be considered theoretically exact, even if their numerical
implementation involves some approximations. They are generally called:

— direct method, or polar method, or method of Box and Muller;

— inverse method.

For our purpose we have chosen these two methods even if they are much more
expensive .in terms of execution time,

3.1 The direct or polar method

This method was proposed by Box and Muller [4 ]:in 1958. It states that if U,

and U, are two values of independent random variables uniformly distributed in
(0,1), then: '

I

(-2log U,) Y2 cos (2 n U,)
(-2logU,) V2 sin (2 n U,)

X

1
(11) X,

are two values of independent random variables normally distributed with mean O
and variance 1.

The demonstration follows from the general method [20, p. 23] of computing
the distribution function after a transformation of variables. Since in our
transformation the Jacobian, with positive sign, is:

J:% and it is always > 0 in the open interval (0,1), then, calling f (U, , U,)
1

andg (X, , X, ) the joint density functions, we have:
flu, ,U,)

g Xy, X;)= J

10



Since U, and U, are independent uniform variables with density 1, we have

U U 1 Y
J J 2n
{/, can be easily computed from aq. {11).
_ )("’,;Xlz
U,=¢e¢
So
(12) giX, X, =—0— 2 1 2

Ven ¢ . VvV ¢

that shows that X; and X, are independent normal variables with zero mean and
variance 1,

3.2 The inverse method

As follows from the definition itself of density function [ 20, pag. 18-19], any
distribution car. be easily transformed into the rectangular form. In fact if wis a
random variable with density function f fw/, the transformation:

v = fw fit)de

~ a0
gives a random variable v with uniform distribution in the interval (0,1).
If X is a random variable with normal distribution, zero mean and variance 1, then

1 - t/,
= e

(13 U X
) /2= J

—00

dt

is a variable with uniform distribution in the interval {0,1) (open interval if we
exclude for X the values + o ); viceversa, given a value for U, the corresponding
value of X can be considered a value of a normal variable with the required
parameters; this is what we call the inverse method. The problem is how to
compute the corresponding value of X once a value for &/ in (G, 1) is given.

11



Since an analytical method is not available, a numerical technique based on
Chebyshev’s orthogonal polinomials can be used. The algorithm we have used
is [1, eq. 26-2-23], [16], [18] :
2 k]

- i i

(14) X-—w-z a, w Zb,w
=0 t=o

where a; and b, are assigned constants and w = V log (TJL!) with 0 < U < 0.5,
Even if the error of this approximation is very high, almost 5+107% | tests
performed on it (see section 4) allow to consider this method quite equivalent to
the direct method.
3.3 Shuffling technique
A problem arises when applying the Box-Muller transformaticn to numbers U,
and U/, coming from a power residue generator [ 30] . If U, and U, are

consecutive numbers generated with the power residue generator, then from eq.
(8) and (10) follows that:

U, = g uy -kp
where kK is an integer. Dividing by p:
U,=gl, -k
With the Box-Muller transformation we have:
X= (-2 IogUl)l? cos {2 n U2)=(-2iogU1)% cos (2ngl, -2n K}
~ due to the periodicity of cosinum, we have:
(15) X, = {-2log U,}T cos (27 gU,)

The same can be said for X,

12



The sin-cos transformation in some sense destroys the independence between U/,
and U, . The distribution function of X, and X, cannot be elementarily
computed as above. What is immediately clear from eq. {15) is that X, has not
mean 0, while the variance not equal to 1 and the non normality of the
distribution cannot be simply shown,

The same problem would arise even if, instead of consecutive numbers {/, and
U, . we took the output numbers of the power residue generator in the order:

U, U, U, U

d+17 d+2°

where d is a fixed distance. We would only find in eq. {15) g instead of g, and
the method would be incorrect as before from a theoretical point of view.

Taking the values /; and U, in inverse order, some authors obtained good results,
but from a theoretical point of view the method remains incorrect, since in eg.
(15) we would find instead of g a number g’, such that:

g9 = 1({mod. 22! -1) [6]

We have adopted the solution proposed in [ 25 ] that consists of a shuffling of the
output numbers of the power residue generator, before the application of the
Box-Muller transformation. The first 128 (= 27) integer numbers generated

(U'.) are consecutively stored into a vector, whose cells are addressed by numbers
0,1,2,...126, 127, (7 bits).

From this point each new number is stored into the cell addressed by its low
order 7 bits, while the previous value occupying that cell is the output number.
Even if this shuffling is strictly necessary only in the case of the Box and Muller
method, we apply it also when using the inverse methaod. In this way the
performances of the two methods can be compared, since they start from the
same input values,

13
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4. STATISTICAL TESTS

We have decided to concentrate statistical tests after the phase of the generation
of pseudo-random numbers with univariate normal distribution.

Two ways can be followed at this point. The first involves applying the greatest
possible number of different tests to the generator; if no one of them {or only
few) reject the hypothesis on the distribution function, the generator can be
defined good.

This way is aimost always followed in the literature: a dozen of different tests of
randomness [22],[24] are applied to large samples of numbers, in order to test
the asymptotic properties of the generator.

The second approach, the one adopted here, attempts to be more *‘finalized”’,
Once the mode of use of the generator and the most important statistical
propertie; to be observed are defined (among the infinite required by the perfect
randomness), tests are concentrated on sequences roughly of the same length as -
those of practical use.

For the stochastic simulation of econometric models, in order to generate random
numbers with multivariate normal distribution and assigned parameters it is
necessary, for the univariate normal generator, to respect the following
properties: .

- Normal distribution

—  Mean 0

—  Variance 1

—  Absence of serial correlation

Other properties, such as the distribution of the runs up and down, the sequences
above and helow the mean etc. do not look to be of the same importance.

Without going into deep details, that can be found. for example. in
[21, p. 419 - 464 |, we give here a brief description of the performed tests.

14



4.1 The X? test

This classical test [21] , [22] introduced by K. Pearson in 1900, is based on the
asymptotic properties of the multinomial distribution. After dividing the real
axis into k intervals, we call P, (i =1,2,... k) the theoretical probability that a
generated number fall into the /-th interval, according to the hypothized
distribution function.

If N is the length of the sample, and n, (i = 1,2,... k) is the number of values that
k

actually fall into the /-th interval (so that N = 2. n,), we compute:

i=1

(16) X? = f n, - WP)*
J=1 NP,
X? is a random variable whose distribution function is asymptotically {as n,
increases for every /} a X'? with k-1 degrees of freedom. The approximation error
in using (16) as a X'* variable is particularly small when P, are all equal
(P,=7}'- , 1 =1,2... k), so that a value of few units for NP, {for example 2 b as
suggested by many authors) is quite sufficient for a good approximation. We have
followed this rule even if the choice of equiprobable intervals increases the cost of
computation,

It is clear from eq. {16) that a high value of X' ? means a big difference between the
observed and the theoretical numbers of values in the intervals. This suggests to
reject the null hypothesis on the distribution when X2 is high {(upper-tail test). We
have followed this rule according to [21, p. 422], even if other authors suggest

a two-tailed test.

15



4.2 The Kolmogorov test

Given F_ (X) the distribution function related to the null hypothesis H_, if S, (X
is the empirical distribution function as it is estimated from a sample of n
numbers, the following value is computed [21] ,[22] :

(17) . K= Sup

S (X) - F, (X)
—00< X <+ 00

The asymptotic distribution of K, was obtained by Kolmogorov in 1933; when
H, holds, it is completely distribution free, and it should lead to a more accurate
test than the X 2 since it is based on the continuous distribution and does not
require arbitrary divisions into intervals [22, p. 47].

A high value of K means great discordance between the hypothized and the
sample distribution. This suggests to reject the hypothesis when K is high
{upper-tail test). We have followed this rule, performing this test only on samples
with at least 100 elements, when the asymptotic formula 10lds with good
approximation [18]. '

4.3 The Z test on the mean

Once the distrib.ution function (normal) and the value of the variance (1) have
been tested and accepted, this simple test can be profitably employed to compare
alternative hypotheses on the mean [9, p. 77].

It simply checks if the estimated mean lies inside or outside a confidence interval
around the hypothized mean, whose amplitude depends on the confidence level
and the sample length {for example + \/1';& if the confidence level is 95% and N is

the sample length).

If only the null hypothesis is formulated, a two-tail test is usually performed; if
also an alternative hypothesis is formulated, and this is the way followed by us, a
one-tail test can be performed.

16
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4.4 The test on the variance
Once the distribution function {normal) and the value of the mean {0} have been
tested and accepted, this test can be employed to compare alternative hypotheses

on the variance [9, p. 102].

After computing the sample variance, in the usual way as

X, -X)?
(18) g2z K- X1
N-1
if @ ? is the true variance, the ratio % is a value of a random variable X2 /df

(chi square over degrees of freedom) where the number of degrees of freedom is
N-1.

When comparing the null hypothasis on the variance with an alternative
hypothesis, the rejection region is chosen on the right or on the left tail, according
to the alternative value of ¢? (that is if it is greater or less than the value of o ? of
the null hypothesis). ‘

4.5 The serial test

This simple test is used to check the absence of serial correlation in a sequence of
random numbers {distribution free test) [17], [19],[22]. The sample is
divided into a sequence of pairs, and the real axis is divided into K equiprobable
intervals (according to the hypothesis on the distribution function). A {(KxK)
matrix is built, and its (i /)-th cell is filled with the number of pairs in which a
number of the /ith interval of the real axis is followed by a number of the j-th
interval.

If serial correlation (of any order} exists, some cells of the matrix are expected to
be filler than the others, so that a test should reject the hypothesis of uniform
distribution of the elements of the matrix itself.

It must be noticed that this test is not a very powerful one, but is the only one
performed by us to check the absence of serial correlation on the adopted
generators. A more precise test, based on Bartlett's formulas, could be
profitably performed [3] .

17




4.6 Experimental results

The sequences of the pseudo-random numbers required for the stochastic
simulation experiments are ““medium’’ or “short”. A pluriequational model, with
a sample period of 20 years [31] , requires a sequence of 20 pseudo-random
numbers for each replication. If, as usually happens, it is wished to perform 10 or
20 replications, it is clear that it is advisable to verify the statistical properties on
“small”’ sequences with some tens of numbers and “medium’’ sequences with
some hundreds of numbers,

The serial test presents some difficulties in the case of smal! samples, and was
applied only to samples of medium length (600 and 1000, tab. 5). The other four
tests were applied to sma!l and medium samples, and an attempt was made to
highlight not only the fit of the samples to the hypothesis on the population, but
also the power of the tests to distinguish between alternative hypotheses on the
distribution function (power of the test).

For each hypothesis a confidence level of 95% was assumed.

A certaiie number of samples of the same length was generated with the two
methods (Inverse, tables x-1, Box-Muller, tables x-2, x from 1 to 4).

Keeping unchanged the hypothesis of normal distribution with variance 1, 18
different hypotheses were formulated with means # 0 (positive and negative) and
the hypothesis of mean = (0. Each of these hypotheses was tested by means

of X? and Kolmogorov as many times as the generated samples.

On some occasions the test is satisfactorily concluded, and on others it is
necessary to reject the hypothesis. Alongside each value of the mean, we indicate,
in percentage form, the number of times that the hypothesis has been rejected. it
is expected to observe a minimum in correspondence with the hypothesis

“mean = 07, and it is expected that the value of this minimum witl be about 5,
and that it will converge towards 5 with the increase of the number of samples
(NRUN on tables) irrespective of the length of each sample (ITIME in the tabtes).
With the rise, instead, of the number of elements of each sample {ITIME) and
irrespective of the number of samples, an ever-increasing selectivity is expected

18



(the same hypothesis of mean # 0 is rejected as many more times as I TIME is
greater).

The Kolmogaorov test, as explained above, was used only for samples of medium
length ({ITIME > 100} (tables 1 and 2).

For the test we have kept to the empirical rule [21] , [22] advising against ever
having a theoretical frequency < 5 in any interval. In order |ater to have the
maximum power of the test [21] , aibeit to the detriment of execution time, we
chose on each occasion a breakdown into intervals (NINTRV is their number} of
equal probability. '

By means of a similar procedure we executed the test on the confidence interval
of the estimated mean {Z test). in this case, any hypothesis of mean # 0 was
subjected to the test against a precise alternative hypothesis, {mean = Q); the test,
therefore, lone-tail test) proved to be particularly powerful.

Practically the same applies to the test on alternitive variances, Taking &s constant
the normal distribution hypothesis with mean zero, 18 differant hypotheses were
formulated with variance # 1 and the hypothesis of variance = 1. In this case too
each of these hypotheses was subjected to X ? test, to the Kolmogorov test and
to the test of the confidence interval of the estimated variance. It should be noted
that the latter test becomes less significant when the number of elements of the
sample increases (we obtain a X% with a high number of degrees of freedom), but
this does not happen in the case, here described, of medium or small samples.

As a final comment on the structure of the tables, it should be said that every
number shown summarises the results of a number of tests equal to NRUN. Thus,
the table 1-1 alone summarises the results of 56,000 separate tests (6 tests on 19
hypotheses, with two repeated combinations, for a total of 112 tests repeated 500
times) on samples of length 200. The table 4-1 summarises the results of 375,000
separate tests on samples of 20 elements.

In every table NSEME is the number which starts the generator (Uo).

19




NSEME 1

NRUN 600
ITIME 200 ‘ .Tab, 1-1
NINTRV 20
VAR =1 MEAN =0
x? KOLMOG 2 TEST X2 KOLMOG VAR, TEST
MEAN % QUT % OUT % OUT VAR % O0UT % QUT % OUT
- 0.8 26.60 59.60 84.20 0.73 38,00 18.60 93.60
—0.16 20.80 51.20 76.80 0.76 29.80 14.80 £5.40
—0.14 17.00 41.60 85.60 0.79 22.00 12.80 76.00
- 0.2 14.00 32.20 51.80 0.82 17.00 10.60 63.00
—0.10 9.40 21.80 41.80 ‘0.85 12.60 8.80 50.20
- 0.08 7.60 15.40 30.80 0.88 9.60 6.60 37.20
—0.06 6.40 10,00 21.00 0.91 7.00 5.80 27,20
-0.04° 5.00 6.40 13.20 0.94 6.40 5.20 16.60
- 0.02 5.00 5.40 7.80 0.97 5.20 4.60 10.40
0.00 6.40 4.40 6.80 1.00 5.40 4.40 5.20
0.02 5.80 5.20 9,20 1.03 4.40 3.80 9,20
0.04 7.40 7.20 11.80 1.06 7.40 4.00 15.40
0.06 7.60 10.60 17.80 1.09 7.00 420 = 2260
0.08 8.40 14.60 29,00 1.12 9.00 6.00 30.40
010 1140, 20.40 39.40 116 10.40 5.40 39.40
0.12 13.20 28.40 52.00 1.18 12.20 6.00 " 49.40
0.14 17.80 36.60 61.80 1.21 13.00 6.60 58.60. .
0.16 21.40 46.00 73.00 1.24 14,00 8.20 66.60"
0.18 24.40 55,20 81.80 1.27 18.00 9.40 75.40
NSEME 1
NRUN 500
ITIME 200 Tab. 1-2
NINTRV 20
VAR = 1 MEAN =0
X2 KOLMOG  Z TEST X2 KOLMOG VAR. TEST
MEAN % OUT % OUT % OUT VAR % OUT % OUT % OUT
-0.18 24,00 67.00 80.80 0.73 40.60 18.80 95,20
- 0.18 17.00 4560 73.80 0.76 28.20 14.40 87.80
- 0.14 12,60 39.60 61.80 0.79 19.40 11.00 76.80
—-0.12 10,60 30.00 52.00 0.82 15.20 8.60 65.60
- 0,10 9.40 22,00 40.20 0.85 10.80 6.60 49,80
— 0.08 6.80 14.60 31.40 0.88 7.00 5.80 37.00
—0.06 4.60 8.60 20.60 0.91 4.20, 6.20 26.40
- 0.04 4.00 6.00 13.00 0.94 3.60 4.40 18.40
- 0.02 3.80 4.40 7.40 0.97 3.00 3.80 10.20
0.00 3.00 3.60 3.80 1.00 3.00 3.60 4,20
0.02 3.60 6.40 8.40 1.03 3.00 2.80 " 6.60
0.04 5.80 7.60 15.80 1.08 2,60 2.80 12.40
0.08 5.60 11.00 21.20 1.09 3.60 3.20 20.80
0.08 $.80 15.60 30.60 1.12 4.80 4.40 28.40
0.10 8.40 21.20 42,80 1.16 8.40 4.60 37.00
0.12 11.60 30.60 £4.00 1.18 9.40 5.00 4920
0.14 12.60 40.00 61.80 1.21 11.40 5,20 58.20
0.16 16.40 47.80 74.20 1.24 11.80 6.60 66.80
0.18 23.60 57.80 82.40 1.27 16.40 7.80 74.80
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NSEME 1000000000

NRUN 1000
ITIME 100 Tab. 2-1
NINTRV 10
VAR = 1 MEAN =0
x¥? KOLMOG  Z TEST x? KOLMOG VAR. TEST
MEAN % OUT % OUT % 0UT VAR - %0UT % QUT % OUT
-0.18 18.50 34,50 56.10 0.56 68.90 38.30 §9.30
—a.186 15.10 27.20 48.70 0.60 54.60 26.40 87.20
~0.14 12.40 21.70 42.50 0.65 40,10 20.60 92.50
- 0.2 9,40 16.70 32.70 0.70 26.30 16.70 82.90
—0.10 7.90 13.80 25.80 0.78 19.60 11.40 69.20
—0.08 6.50 10.90 20,20 0.80 13.50 8.30 62.30
- 0.06 5.90 8.00 14.40 0.85 8.10 6.70 34.00
—0.04 4.90 6.70 10.90 0.90 8.10 5.70 21.30
—0.02 4,60 5.70 7.60 0.95 6.20 6.50 12.20
0.00 6.00 5.60 5.20 1.00 6.00 6.60 6.20
0.02 8.10 5.40 7.70 1.06 6.30 5.30 8.30
0.04 6.60 6.20 10.50 1.10 £.70 5.40 14,50
0.06 8.20 8.40 16.30 1.16 7.70 8.10 22.20
0.08 B.50 10.50 21.40 1.20 9,00 6.10 30.80
0.10 10.90 1400 - 28.10 1.25 11.30 6.40 41,80
0.12 11,10 18.30 34,30 - 1.30 14.80 7.10 52,90
0.1a 13.60 23.50 A1.40 1.36 17.30 7.70 64.80
016 16.20 28.40 48.10 1,40 20.80 9.00 73.60
0.18 19.00 33.50 54.30 1.46 24.20 8.60 79.80
NSEME 1000000000
NRUN 1000
ITIME 100 Tab. 2.2
NINTRV 10
VAR =1 MEAN =0
x? KOLMOG  Z TEST X? . KOLMOG VAR.TEST
MEAN % OUT % OUT % QUT VAR %OUT %ouT % OouT
-D0.18 16.20 31.00 £2.90 0.66 65.70 35.10 99.50
- 0.16 13.30 26.20 45.30 0.60 50.30 24.20 97.00
~-0.4 12.10 20.30 37.40 0.65 36.80 17.60 92.70
- 0.12 9.90 15.90 30.30 0.70 25.20 12.10 81.20
—0.10 8.30 $2.00 25.60 0.75 16.60 .60 66.00
—0.08 6.90 5.40 18.90 080  11.30 8.90 48.80
—0.06 6.70 7.00 14.00 0.85 7.60 .40 32.10
—0.04 5.80 5.90 10.00 0.90 6.30 3.70 15.60
- 0.02 5.10 3.60 7.70 0.96 6.40 3.50 11.00
0.00 4.90 3.40 4.70 1,00 4.90 3.40 6.40
0.02 4.10 3.30 6.30 1.08 6.10 3.50 8.70
0.04 4.70 4,60 10.00 1.10 6.10 3.40 15.40
0.06 450 6.40 14.40 1.15 7.40 3.80 24.00
0.08 6.50 8.50 19.50 1.20 8.60 5.00 34.20
0.10 7.40 11.40 26.40 “1.25 11.20 - 530 44.30
0.12 8.90 14.80 33.60 1.30 13.40 6.30 56.30
0.14 11.10 19.10 42,10 1.35 16.20 7.10 66.60
0.16 13.80 26.10 50.40 1.40 20.40 8.00 74.90
0.18 17.80 30.90 58.40 1.45 24.90 9.00 81.90
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NSEME 1234567

NRUN 2000 .
ITIME 50 Tab.3-1
NINTRV 7
VAR =1 ' MEAN =0
x? Z TEST X2 VAR, TEST
MEAN % OUT % OUT VAR %OUT % OUT
— 0.36 38.80 82.10 0.46 652.86 98.25
T 032 30.85 72.80 . 052 39.35 94.00
—0.28 Z3.R0 62.90 0.8 28.06 87.60
-0.24 16.70 61.45 0.64 19.85 75.05
- 0.20 12,25 3965 0.70 13,35 59.00
- 0.16 9.70 29.15 0.76 9.65 42.80
- 0.12 7.55 20.30 0.82 6.75 28.90
- 0.08 5.60 13.20 0.88 5.30 16.90
—004 . 465 - 7.90 0.94 4.60 B.35
0.00 4,80 4.20 1.00 4.80 4.40
v 0.04 4.70 8.70 1.06 4.66 7.85
0.08 E.80 13.90 1.12 5.40 12.00
0.12 7.76 21,30 1.18 6.20 16.90
0.18 8.85 30.30 1,24 7.20 23.75
0.20 13.15 41.80 1.30 8.60 31.70
0.24 17.95 62.75 1.36 9.65 40.10
0.28 23.40 64.60 1.42 11.35 48.40
0.32 31.65 74,56 1.48 14.50 6.2
0.38 40.16 82.40 1564 17.45 64.35
NSEME 1234567
NRUN 2000
ITIME 50 Tab. 3-2
NINTRYV 7
VAR =1 i MEAN=0
xX? Z TEST X% WVAR.TEST
MEAN % OUT % QUT VAR % 0UT % OouUT
- 0.36 39.20 81.85 0.46 53.60 98.35
- 0.32 31.20 73.45 052 39.55 93.95
- 0.28 24.50 62.95 D.58 27.80 86.45
- 0.24 17.25 52.75 0.64 19.65 75.15
—0.20 12.30 41.30 0.70 13.50 59.80
- 0.16 8.45 30.65 0.76 9.75 42.45
-0.12 .80 21.10 0.82 7.30 28.75
~0.08 5.30 13.40 0.88 6.35 17.30
- 0.04 4.85 4.10 0.94 4.75 9.45
0.00 5.16 5.10 1,00 5.15 5.30
0.04 5.20 8.36 1.06 5.50 B.10
0.08 6.10 14.45 1.12 B.65 12,10
0.12 7.95 21.30 1.18 6.30 17.60
0.16 9.80 30.45 1.24 6.90 23.55
0.20 13.25 40.80 1.30 8.7¢ 31.80
0.24 13.70 52,05 1.36 10.55 39.60
0.28 24.80 62.80 1.42 12.70 47.40
0.32 30.85 72.70 1.48 14.80 56.75
0.36 39.20 81.65 154 17.45 63.70
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NSEME
NRURN
ITIME

NINTRV

NSEME
NRUN
ITIME
NINTRV

65432
5000
20
3
VAR =1
x 2
MEAN % OUT
— 0.54 46,36
- 0.48 37.74
—0.42 29.92
—0.36 23.30
- 0.30 17.34
- 0.24 13.02
- 0.18 g9.24
—0.12 7.32
—0.06 5.74
0.0C 5.38
0.06 6.02
0.12 7.68
0.18 9.58
0.24 13.22
0.30 18.18
0.36 23.74
0.42 31.22
0.48 39.48
0.54 48.00
65432
5000
20
3
VAR =1
x2
MEAN % OUT
- 0.54 47.20
- 0.48 38.20
— 0.42 30.34
- 0.36 23.54
-0.30 18.16
-0.24 12.52
—-0.18 9.64
- 012 7.18
- 0.06 6.74
0.00 574
0.06 6.40
0.12 7.42
0.18 9.84
0.24 14.06
0.30 18.76
0.36 24.66
0.42 32.18
0.48 40.48
0.54 48,94

2 TEST
% OUT
78.10
69.22
59.30
48.38
37.20
28.00
19.00
12.68

7.98

4.40

8.32
13.28
19,80
28.14
37.72
48.98
59.86
69.72
78.96

Z TEST
% OUT
7788
69.30
59.14
48.92
37.66
28.00
20.12
13.80

8.66

5.16

8.72
13.38
15.94
28.32
37.80
48.36
59.50
69.78
78.04

Tab. 4 -1
MEAN =0
X? VAR, TEST
VAR %OUT %OUT
0.37 17.06 91.64
0.44 1384 B2.80
0.51 11.64 70.38
058 8.38 56.78
0.66 B.08 42,14
0.72 6.96 29.64
0.79 6.32 2052
0.86 5.82 13.34
0.93 5.48 8.28
1.00 6.38 6.02
1.07 5.46 7.44
1.14 5.54 9.76
1.21 .74 12.48
1.28° - .8.30 16.66
1.36 €.92 19.22
1.42 7.60 23.30
1.49 8.66 27.88
156 9.70 32.24
1,63 10.74 37.34
Tab. 4 -2
MEAN =0
X2 VAR TEST
VAR ~ %OUT  %OUT
0.37 17.44 91.88
0.44 14.22 83.48
0.51 11,80 70.56
0.58 9.98 55.96
0.65 8.56 41,78
0.72 7.40 30.44
0.79 6.42 20,74
0.86 6.04 13.24
0.93 5.84 8.06
1.00 5.74 468
1,07 5.68 6.54
1.14 6.10 9.40
121 - 662 12.14
1,28 7.28 15.36
1.35 7.94 18.68
1.42 8.68 23.06
1.49 9,62 27.62
1.66 10.40 32.14
1.63 11.28 36.94
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Tab. 5

SERIAL TEST
Inverse Method Direct Method
NRUN = 100 NRUN = 100
NSEME ITIME % OUT NSEME ITIME % OUT
2000000000 500 6 1 C 1000 6
2000000001 500 11 2 1000 4
2000000002 500 3 1000000000 500 6
2000000003 500 3 1000000001 500 4
2000000004 500 5 1000000002 500 o o)
2000000005 500 3 1000000003 500 .5
1000000004 500 1
1000000005 500 7
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4.7 Conclusions
The results experimentally obtained confirm that;

—  Short or medium sequences of numbers generated with any one of the two
methods {without preference for one or the other) may in fact be taken as
drawn from a normal population with mean Q and variance 1.

—  The same segquences cannot be taken as drawn from a population with a
mean “fairly’’ different from 0Q, or with a variance *‘fairly"”’ different from 1
(where the term “fairly”” indicates something that is a function of the length
of the sequence),

—  Once the hypothesis of the normality of the distribution has been accepted,

- the test.of the confidence interval {of the estimated mean or variance} seems
to be more powerful than X ? test and Kolmogorov test in rejecting
hypotheses of mean # 0 or variance #1.

-~ The Kolmogorov test seems to be more powerful than the X2 test in
rejecting hypotheses of mean # 0.

— The X? test seems instead 1o be more powerful than the Kolmogorov test in
rejecting hypotheses of variance #1 {for these sample sizes)}.

—  Sequences of numbers of medium length generated with the two methods
may be regarded as having no autocorrelation.

—  In order to determine if, and how many times, they can instead be regarded
as being affected by autocorrelation of a certain order with certain vatues of
the coefficient p+#0, as well as for analysis of short sequences, a mare accurate
test {based, as said above, on the formulas of Bartlett [ 3 ]jcould be profitably
performed.
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5 GENERATION OF PSEUDO-RANDOM NUMBERS WITH
ASSIGNED VARIANCE - COVARIANCE MATRIX

in this section two methods for the generation of pseudo-structural errors, to be
used in the stochastic simulation of an econometric model are described.

The pseudo structural errors that are introduced during the solution in the
behavioural equations of a model must have the same statistical properties {in terms
of variance, of simultaneous covariance between equations and of serial
correlation) embodied by the structure of the mode! [ 7] : in other words, these
must come from the same multivariate distribution. Taking into account the fact
that the structural errors are regarded as additive during the estimation phase, the
pseudo-structural errors are added to the constant term of the behavioural
equation during the solution stage. Added to this, they are normally generated in
such a way that their variance-covariance matrix is asymptotically equal to the
variance-covariance matrix relating to the sample period. Even if we shall =
disregard the problem of serial correlation within equation, this approach
represents a more general procedure than the one described in [ 32 ] which uses a
diagonal variance-covariance matrix, in such a way that the simultaneous
covariances between the different equations are all equal to zero. Let us examine
in detail two of the techniques proposed in the literature:

a — Nagar’s algorithm [ 27]
b — McCarthy’'s algorithm [ 26 |

Let U, be the errors of the equation / at the various intervals £, we obtain the
following relations:

o for t, = t,
EWy, Up,) =
{19) 0 for t; # t,
for t,,¢6,=12,....,T and i, /=12,....,M

where T is the Igngth of the sample period and M is the number of structural
equations,
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Since,as we have mentioned in section 1, the pseudo-structural disturbances are
generated in such a way as to follow the statistical properties which characterize
the model, the previous hypothesis means considering in the model an error
structure that is not serially correlated. Similar observations {(with related
formulas) are given in [26], [ 27 ] for the case of pseudo-structural disturbances
correlated on time,

5.1 Nagar’s algorithm

Nagar's algorithm makes it possible to obtain the desired matrix of
pseudo-structural errors, by means of a linear transformation of an assigned
matrix with independent random numbers normally distributed. It is wished to
generate a matrix U with dimensions TxM:

L-jl-lnu...--.

""”.-Q
£~

(20) U= |:

UT.I.........' 0TM

s0 that th: elements in the m-th column represent the pseudo-structural errors 1o
be added to the m-th structural equation of the model at the various time
intervals (1,2,......... , T). The pseudo-structural disturbances / must have a zero
mean and a specified variance-covariance matrix:

q’l 1 IR NN R NN O.'IM
(21) Ew=0 L Ewu=72-= 5

UM 1ll lllllll O'MM
where o, is the covariance between equation 7 and equation /.

During the experiments of stochastic simulation, we have available a matrix of
dimensions 7xM which contains independent pseudo-random numbers normatly
distributed with a zero mean and unitary variance;

.Xl.l.".--'“XIM

"

(22) X =

XT.l --------- X
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Hence X satisfies the following conditions:
(23) E(X)=0 % EX'X) =1
where I is the identity matrix of dimensions MxM.

The step from X to U is obtained by means of a matrix of transformation A {of
dimensions MxM) so that:

(24) U=XA

in such a way that, X having been specified previously, the following holds:

(25) s=1 ewu-l ewaxxa_- AL Exxa-aa
. T T ‘ T

having taken into account the fact that the elements of A’and A are deterministic
andthat 1 E{X'X) 1|
T

As matrix £ we utilize in pratice:

(26) o1 070
I - —
2=7
A
(obtained from the estimation stage), U being the matrix of the structural residuals
of dimensions TxM (1) .

On the basis of eq. (25) and having established X, the matrix A is computed once
for all at the beginning of the process of stochastic simulation. In practice,
however, it must be born in mind that £ is symmetrical, so that A is not
univocally determinable, unless additional hypotheses are made (23, in the course
of this work, we assumed A to be lower-triangular, as suggested.in [27].

A
{1} From now on, no distinction will be made between £ and X | and the notation £ will be used.
M, M+ 1)

{2) The distinct elements of X are , those of A are in general M2
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The elements of A are determined by £ making the corresponding elements of
A’A and I equal, starting from the element on the last line and on the last
column and then working back to the first line (1), (21.

The present algorithm may be correctly utilized only if T > M. In fact, to avoid

the generation of complex pseudo-structural errars U, the elements of the matrix
A {in particular diagonal elements a;;} must be real and this is guaranteed only if
the matrix Z is positive definite [ 27] .

- A’ A . N -
Thematrix £ = -,}-1—~ U U obtained from the structural residuals, if the number of
observations 7 is less than the number of structural equations M , is, however,
singular and hence is certainly not positive definite.

at diagonat elements
[o . % 2
(27 a, = o, - 3 P=1,...,M-1
il \ I pmiv 1 i
(28) aym= N um
b} non diagonasl elemants of 4
(29) 7 <j a; =0 by definition
M .
(30) P> a;; = (G”'—,;.E;na*“" )/ 2y i=1,... M1
[l
{31) By, = —2L j= 1., M-

A m

{2) This procedure is in 8ll respects equivalent to the ane described in Naylor [28] . [ 29] for the
generation of a normal multivariate distribution. The only difference, which determines the
diversity of tha relative formulas (see [29, p. 98] ] lies in the fact that the transfarmation
matrix A is in Naylor usad to pre-multiply the X,
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In the model used as a sample [ 31] , with M=5 and 7=20, Nagar’s algorithm can
be correctly applied. With regard to the practical implementation of the
algorithm, since in our case we proceed by carrying out all the replications for a
year before going on to the next year, the {/ matrix was ‘‘generated and utilized”
from the standpoint of the rows; each row of the matrix represents, for each -
period, the pseudo-structural errors to be added to the M equations of the model.
In fact, as we are hypothesizing serial independence for U, row dimension is
non-essential. Furthermare, the utilized algorithm ensures that the normal
pseudo-randem numbers generated are independent one from the other. Hence,
once a specific year has been established, a row vector u, of length M is generated
at each replication, utilizing not the whole matrix but only one of its row vectors
X, of length M. When there are no remaining replications for that given year, we
move on to the subsequent year, which is equivalent to generating, for each
replication, a new row vector of X and then of U/, and so on.

5.2 McCarthy's algorithm

In recent years, most stochastic simulation applications of econometric models,
[8],[10],[12],[14],[33], have been based on another algorithm
{(McCarthy's} which is not subject tc the limit {7 > M) of Nagar’'s algorithm,
which is simpler computation wise and which explaits the structural residuals
directly.

In this case too, let us take an X matrix of independent random numbers
normally distributed with a zero mean and a unitary variance of dimensions gx 7
(where g is the number of periods {years) for which we wish to obtain the U/
matrix of pseudo-structural errors and 7 is the dimension of the sample} and an U
matrix, of dimensions 7xM (M being the number of structural equations in the
maodel), of structural residuals of the sample period.

The pseudo-structural disturbances to be added to the model are given, for each
period and for each replication, by a row of the matrix, of dimensions gxM:

1
= -
(32) Y

XU
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It can be shown [26] that for models estimated by consistent methods, the
covariance matrix of U will be asymptotically equa! to the true covariance
matrix of the system.

From the standpoint of practical implementation, a row vector u, of length M is
also generated in this case at each replication; the difference as compared with
Nager is that the row vector of X which is utilized each time is of length 7.

As mentioned earlier, the limit of applicability of Nagar’s technique does not exist
for this algorithm but, naturally, the statistical properties of the pseudo-structural
errors generated depend on the number of observations available for the
estimation of the model. '

The feature common to both algorithms is that both are based on appropriate
changes in the residuals of the sample period which are obtained from the
estimated model. As mentioned, in McCarthy’s algorithm these residuals are
utilized directly and constitute the weights for a combination of normal
independent random variables.

In Nagar’s algorithm, on the other hand, the residuals are utilized indirectly, that
is to say they go to make up the X matrix, which in turn is used to determine the A
matrix and then, finally, the {/ matrix.

5.3 Descriptive statistics and tests on the generation of the multivariate normal
distribution: a Monte Carlo study

As stated previously, for both Nagar’s and McCarthy’s algorithms the

pseudo-structural errors are obtained via a linear transformation of normal

independent random numbers produced by a generator,

Hence, the pseudo-structural errors should have the properties hypothesized
in [26 |, | 27 | which should not have to undergo’statistical tests.
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However, considering the complexity of the transformation algorithms, it cannot
be ruled out a-priori that an error in the generator which proved acceptable from
the tests undergone by the generator may be amplified to the extent of
invalidating the properties of the pseudo-structural errors,

We used as sample the variance-covariance matrix of the structural form of the
model presented in [ 31 ], estimated with the method of ordinary least squares.

53.1 Mean

An initial analysis consisted in computing the mean of & {where v indicates the
vector 1xAM generated for each replication and for each period) over the
subsequent replications, for the purpose of verifying empirically the property
E{u*) = 0, where 0 is a vector of zeroes measuring 1xM. Table 6 shows some
results relating to the two described algorithms, in correspondence with number
of replications (1) equal to 1000, 5000, 10000, 50000 and 100000. '

The results relating to the two algorithms were obtained by s.arting from the
sarme initial value in the generation of random numbers. Given the difference in
the methods, the random numbers used overall are not however the same, since,
starting from the same value, the McCarthy method utilizes T extractions of
random numbers at each replication instead of M extractions as in Nagar’'s
method. :

Regarding the utilized numbers, in the test with b 000 replications we use the
1000 numbers relating to the previous test, in the one with 10 000 replications we
use the 5000 previous numbers, and so on.

(1} By replication is meant an individual experiment of stochastic simulation made by attributing
to each structural equation of the modsl a random disturbance beionging to a multivariate
distribution assigned a priori,
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Tab. 6

Value of & *on the variation of the number of replications.

McCarthy

NREP = 1000 NREP =5000 NREP=10000 NREP=50000 NREP = 100000

6.110 2.938 2.766 -374 —.633
6.594 1514 1.016 —.180 ~.019
5.861 6.874 —2.268 —-.816 -.119
6.238 3.542 2.018 0.346 0.213
0.032 —'._651 -.019 0.0071 0.011

Nagar

NREP=1000 NREP=6000 NREP= 10000 NREP = 50000 NREP = 100000

8.014

1.963

—2.070

5.052

-0.132

~.481

0.213

1.016

—.225

—.033

—3.1440

0.2110

-.0571

—.B8510

—.0004

0.217

0.407

—1.122

—.136

—.005

—.768

=171

—.062

—~.164
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On an initial examination, a certain convergence of the individual elements of the
vector & * towards O can be noted even though it is not reached numerically with
even 100 000 replications. The hypothesis E{i*)=0 can however be subjected to
Z test, by fixing a 95% confidence interval for the hypothesis. The hypothesis is
not rejected if the computed value & falls in the interval

..
+ 196 V ——

NREP

whereg o, is the value of the theoretical variance relating to the /-th equation, that
is to say:

g, = 247.451
g,, = 101.727
033 = 167.008
7,4 = 138.223
Ogg = 1.804
%
The values of: 1.86 _
NREP

are given in the following table:

NREP = 1000 NREP=5000 NREP= 10000 NREP=50000 NREP=100000

15.3372 6.85808 4.85003 2.16900 1.63372
6.3051 2.81973 1.99835 0.89167 0.63051
10.3515 4.62023 327336 . 1.46380 1.03513
8.5671 3.83134 2.70017 1.21158 0.85617
0.1119 0.04999 0.03535 0.01581 0.01118

Comparing tables 6 and 7, it can be seen that the hypothesis is refused only 3
times, namely twice in McCarthy in correspondence with L_f; (1000 replications)
and with &, {5000 replications), and once in Nagar in correspondence with u;
{1000 replications}.
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The case ¢ {10000 replications) of McCarthy is exactly at the limit, if we
consider the inevitable rounding off errors,

The resutts therefore well concord with the confidence level of the test (95%),
given that they refer to 50 events (25 for Nagar and 25 for McCarthy).

5.3.2 Variance-covariance matrix
— . . . *
If we collect the vectors 7*, we can compute a variance-covariance matrix £ .

in the described hypotheses we have:

1 A
(33) E(Z*)z? vu=

x

A qualitative check of this property can be made by means of tables 8 and @ (for
McCarthy's and Nagar's methods respectively). In these, 6 columns are compared,
representing the £ “nd Z” relating to 1000, 5000, 10000, 50000 and 100000
replications respectively.

An element of the various matrixes is given on each ling, starting from the
element o;,,0,,, up 10 os5.

The symmetrical elements are computed twice to ensure that the results are
numericalty correct, and both are shown for completeness reasons.

A more exact idea of the validity of the results could be obtained only by
performing an appropriate test, However, as this is'a test on variance, as always
happens when there are large numbers of samples, it does not prove very
significant, given the low selectivity of X ? with many degrees of freedom. We
will therefore confine ourselves to noting the clear concordance of the simulated
values with the theoretical ones,

A more exact test, which can be carried out simuttaneously on the variances and
covariances {more precisely, on the simuilated correlation coefficients, the
theoretical correlation coefficients being known) is the one described in[ 2 |,
based on Fisher’'s 2.
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It can be seen that even for a fairly small number of replications, the
INEEDY

is satisfactorily verified, as numerical values, element by element, and in particular
for the diagonal elements (variances), whereas there is some sign discordance for
the covariances in Nagar's method.

In particular, for the covariance between equations 1 and 2 (elements o,
and o, ,) the sign is reproduced correctly only if we start from 50000
replications. Even in this event, however, the asymptotic properties show up,
given that compared with o,, = 115.94, o}, goes from -1257.6 to -430.4,
to-172.1, to 58.25 and finally to 178.39.

In addition to this o*,,, in correspondence with McCarthy’s algorithm is also
rather unstable as the number of replications varies.

This instability is attributable to the fact that the theoretical variances of
equations 1 and 2 are very high, whereas the covariance between them is very
low: hence, if we take into account the structure of the covariance, it is not
unreasonable in the case of small samples to expect the sign of the simulated
covariance to be different from the theoretical cne.

5.4 Conclusions

The results exprimentally obtained confirm that:

—  in spite of the complexity of the transformation algorithms, there seems not
to be an amplification of the errors;

— as far as the mean and the variance of the generated pseudo-structural errors
are concerned, there seems not to be a clear cut prevalence of one algorithm
on the other;

— in spite of the narrower applicability, the Nagar algorithm is faster than the

McCarthy's, expecially when the number of behavioural equations is much
less that the sample period length.
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